Category Archives: Arduino

Arduino and Cayenne using USB

If Cayenne library is not available in your Arduino IDE library list then update your Arduino IDE.

The steps for connection and setting up are available in the Cayenne (mydevices.com). After connecting the Arduino using USB, a batch/script file needs to be run on the system, otherwise Cayenne will not be able to connect to Arduino.

Windows: 
> cd C:\Users\<uername>\Documents\Arduino\libraries\Cayenne\extras\scripts\
> cayenne-ser.bat -c COM21  // Replace COM21 with your Serial Port number to which Arduino is connected.

Linux:
I haven't tried this on Linux system yet.
The script file name for linux is cayenne-ser.sh

The script needs to be stopped before transferring binary (codes) to the Arduino else, Arduino IDE will complain – port busy or not accessible.

 

DHT 11 – Temperature and Humidity sensor

Mostly made by Aosong. Here is the datasheet. Libraries are little rare and seems to be bit old. But this one on GIT is working fine.  The library has been attached here also in case the GIT one is not available for any reason.

There are example codes in the library. Wiring the module is pretty simple.

DH-11

The module works on 3.3v – 5v and uses I2C for communication.

As per the datasheets the module will malfunction under harsh conditions and contamination. But it may recover if left for sometime.

Using a 1.44″ Color LCD with Arduino as a display

Recently purchased a cheap color LCD from Ebay (http://www.ebay.com/itm/1-44-Red-Serial-128X128-SPI-Color-TFT-LCD-Module-Display-Replace-Nokia-5110-LCD-/310876068105?hash=item4861a85909:g:9LoAAOSwpzdWqdY~). They are really good for displaying anything (from an Arduino perspective) in color.

Though the are cheap and nice, but finding the proper library for them can be a pain. It would be wise to check the details of the LCD and availability of it’s library first before buying.

What I found so far is there are mainly two types of LCDs that are cheaply available on Ebay. One based on the ILI9163 chipset and another based on the ST7735 chipset.

Arduino IDE from version 1.0.5 onwards comes with a LCD library, which is based on the ST7735 chipset and an advancement of the Adafruit Libraries. Please see this article for more details.

Using the LCD is not much complicated but only thing to remember is there is a huge lot of confusion with which one supports what voltage and I/O levels. So with mine I started with 3.3v and things are working fine.

LED         Connect to +ve supply through a resistor
SCK         13 (fixed as per library)
SDA         11 (fixed as per library)
A0/DC        7 (can be any)
RESET        4   (can be any)
CS           5 (can be any)
GND         GND   
VCC         3.3v

There is one limitation to all libraries (I tested) at the moment, updating the texts on the display. The only way to clear the LCD is by calling the background function and painting the LCD with a color. This gives flicker, as a full screen text takes a bit time to get written fully. Yet to find a solution to this. In the below code only the area that needs to be updated is being cleared.

#include <SFE_BMP180.h> //from sparkfun 
#include <Wire.h>
#include <SoftwareSerial.h>

//#include <Adafruit_GFX.h>
#include <TFT.h> //comes with Arduino IDE 1.0.5 onwards
#include <SPI.h>

// Define pins for ILI9163 SPI myDisplay
#define __CS 5
#define __DC 7 // Labeled as A0 in some modules
#define __RST 6
// Connect SDA to Arduino pin 11 (MOSI), and SCK to 13 (SCK)

char printBuffer[32];

// Color definitions
#define BLACK 0,0,0
#define BLUE 0,0,255
#define RED 255,0,0
#define GREEN 0,255,0
#define CYAN 0,255,255
#define MAGENTA 255,0,255
#define YELLOW 255,255,0 
#define WHITE 255,255,255
#define TRANSPARENT -1
TFT myDisplay = TFT(__CS, __DC, __RST);


//#include <dht11.h>
//dht11 DHT11;


#include "DHT.h"
#define DHTPIN 2
#define DHTTYPE DHT22   // DHT 22  (AM2302), AM2321
DHT dht(DHTPIN, DHTTYPE);


#define _SS_MAX_RX_BUFF 128 // RX buffer size //BEFORE WAS 64


SoftwareSerial esp8266(8,7); //RX,TX

String inputBuffer = "";
String slength;
String sTemp;
boolean stringComplete = false;
int inputBufferIndex;

String data1 = ""; 
String data2 = "";
String data3 = "";
String data5 = "";

SFE_BMP180 pressure;

char status;
double T,P,temp,paH,paM, tempHighest = 0.00, tempLowest = 100.00;

float humHighest = 0.00, humTemp = 0.00, humMin = 100.00;

float lmHighest = 0.00, lmTemp = 0.00, lmMin = 100.00;

unsigned long startTimeDataCapture = 0;
unsigned long lastCapture = 0;

void setup() {
  // put your setup code here, to run once:  
  inputBuffer.reserve(256); //to be optimized
  
  pressure.begin();

  dht.begin();

  pinMode(A0,INPUT);
  analogReference(INTERNAL);

 myDisplay.begin();
 myDisplay.setRotation(4);
 myDisplay.setTextSize(1);
 //myDisplay.setBitrate(24000000);
 //myDisplay.clearScreen();
 myDisplay.background(0,0,0);

 myDisplay.stroke(CYAN);
 myDisplay.setCursor(5,40);
 myDisplay.print("Cur :");
 myDisplay.setCursor(5,50);
 myDisplay.print("Min :");
 myDisplay.setCursor(5,60);
 myDisplay.print("Max :");

 myDisplay.stroke(YELLOW);
 myDisplay.setCursor(5,75);
 myDisplay.print("Hum :");
 myDisplay.setCursor(5,85);
 myDisplay.print("Min :");
 myDisplay.setCursor(5,95);
 myDisplay.print("Max :");

 myDisplay.stroke(WHITE); 
 myDisplay.setCursor(5,110);
 myDisplay.print("PAH :");
 myDisplay.setCursor(5,120);
 myDisplay.print("PAM :");

 myDisplay.stroke(GREEN); 
 myDisplay.setCursor(5,135);
 myDisplay.print("L_C :");
 myDisplay.setCursor(5,145);
 myDisplay.print("L_M :");
  
  Serial.begin(9600);

  esp8266.begin(115200);
  esp8266.println("AT");  delay(100);
  esp8266.println("AT+UART_CUR=4800,8,1,0,0"); esp8266.flush(); delay(100);
  while(esp8266.available())
  {
      //Serial.write(esp8266.read());
      esp8266.read();
      delay(80);
  }
  esp8266.end();

  esp8266.begin(4800);
  esp8266.println("AT"); delay(100);
  
  esp8266.println("AT+CIPMUX=1"); delay(100);
  esp8266.println("AT+CWMODE=1"); delay(100);
  //esp8266.println("AT+CWJAP="xxxxxxxxxxxxx","xxxxxxxxxxxxx""); esp8266.flush(); delay(1000);  
  //esp8266.println("AT+CWJAP="xxxxxxxxxxxxxxxx","xxxxxxxxxxxxxx""); esp8266.flush();  delay(1000);  
  
  while(esp8266.available())
  {
      //Serial.write(esp8266.read());
      esp8266.read();
      delay(80);
  }
    
  delay(1000);
}



void loop() {

  //myDisplay.setCursor(0,40);
  
  while(esp8266.available())
  {
      //Serial.write(esp8266.read());
      esp8266.read();
      delay(10);
  }

  inputBuffer = "";
  stringComplete = false;
  
  status = pressure.startTemperature();
  if (status != 0)
  {
    // Wait for the measurement to complete:
    delay(status);

    // Retrieve the completed temperature measurement:
    // Note that the measurement is stored in the variable T.
    // Function returns 1 if successful, 0 if failure.

    status = pressure.getTemperature(T);
    if (status != 0)
    {
      // Print out the measurement:
      temp = T;
            
      // Start a pressure measurement:
      // The parameter is the oversampling setting, from 0 to 3 (highest res, longest wait).
      // If request is successful, the number of ms to wait is returned.
      // If request is unsuccessful, 0 is returned.

      status = pressure.startPressure(3);
      if (status != 0)
      {
        // Wait for the measurement to complete:
        delay(status);

        // Retrieve the completed pressure measurement:
        // Note that the measurement is stored in the variable P.
        // Note also that the function requires the previous temperature measurement (T).
        // (If temperature is stable, you can do one temperature measurement for a number of pressure measurements.)
        // Function returns 1 if successful, 0 if failure.

        status = pressure.getPressure(P,T);
        if (status != 0)
        {
          // Print out the measurement:
          paM = P;
          paH = P*0.0295333727;
        }
        else
        {
          paM = -1;
          paH = -1;
        }
      }
      else
      {
          paM = -1;
          paH = -1;
      }
    }
    else
    {
      temp = -1;
    }
  }
  else
  {
    temp = -1;
  }

  if(tempLowest > temp)
    tempLowest = temp;

  if(tempHighest < temp)
    tempHighest = temp;

  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,40,75,10);
  myDisplay.setCursor(45,40);
  myDisplay.stroke(CYAN);
  myDisplay.println(String(temp) + (char)248 +"C");
  //delay(100);
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,50,75,10);
  myDisplay.setCursor(45,50);
  myDisplay.stroke(CYAN);
  myDisplay.println(String(tempLowest) + (char)248 +"C");
  //delay(100);
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,60,75,10);
  myDisplay.setCursor(45,60);
  myDisplay.stroke(CYAN);
  myDisplay.println(String(tempHighest) + (char)248 +"C");

  delay(500);

  humTemp = dht.readHumidity();
  if(humHighest < humTemp)
    humHighest = humTemp;
  if(humMin > humTemp)
    humMin = humTemp;  
  sTemp = String(humTemp) + "%  " + dht.readTemperature();
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,75,80,10);
  myDisplay.setCursor(45,75);
  myDisplay.stroke(YELLOW);
  myDisplay.println(sTemp);
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,85,80,10);
  myDisplay.stroke(YELLOW);
  myDisplay.setCursor(45,85);
  myDisplay.println(humMin);
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,95,80,10);
  myDisplay.stroke(YELLOW);
  myDisplay.setCursor(45,95);
  myDisplay.println(humHighest);

  delay(500);

  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,110,75,10);
  myDisplay.stroke(WHITE);
  myDisplay.setCursor(45,110);
  myDisplay.println(String(paH));
  //delay(500);
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,120,75,10);
  myDisplay.stroke(WHITE);
  myDisplay.setCursor(45,120);
  myDisplay.println(String(paM));

  
  lmTemp=analogRead(A0); // reads the sensor output
  lmTemp=lmTemp*0.10546875;
  // converts the sensor reading to temperature
  if(lmHighest < lmTemp)
    lmHighest = lmTemp;
  if(lmMin > lmTemp)
    lmMin = lmTemp;  
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,135,75,10);
  myDisplay.stroke(GREEN);
  myDisplay.setCursor(45,135);
  myDisplay.println(String(lmTemp));
  //delay(500);
  myDisplay.fill(BLACK);
  myDisplay.stroke(BLACK);
  myDisplay.rect(45,145,75,10);
  myDisplay.stroke(GREEN);
  myDisplay.setCursor(45,145);
  myDisplay.println(String(lmMin));
     
 
  if(millis() - lastCapture >  300000)
  {
    lastCapture = millis();
    
    esp8266.println("AT+CWJAP="xxxxxxxxxxxxxxxx","xxxxxxxxxxxxxxxxxx""); esp8266.flush();  delay(5000);
    
    data1 = "GET /interface_1.php?action=1&temp="+String(temp)+"&paM="+String(paM)+"&paH="+String(paH)+" HTTP/1.1";
    data2 = "Host: 128.199.183.127";
    data3 = "User-Agent: IOT";
    data5 = "Connection: close";
    
    Serial.println(data1);
    //Serial.println(data1.length()+data2.length()+data3.length()+data4.length()+data5.length());
       
    esp8266.println("AT+CIPSTART=4,"TCP","xxx.xxx.xxx.xxx",nn");  delay(1000); 
    while(esp8266.available())
    {
        //Serial.write(esp8266.read());
        esp8266.read();
        delay(10);
    }
  
    slength = String(data1.length()+data2.length()+data3.length()+data5.length()+12);
    esp8266.println("AT+CIPSEND=4,"+slength);
    delay(1000);
    while(esp8266.available())
    {
        //Serial.write(esp8266.read());
        esp8266.read();
        delay(10);
    }
    
    // put your main code here, to run repeatedly:
    esp8266.println(data1); delay(1);
    esp8266.println(data2); delay(1);
    esp8266.println(data3); delay(1);
    esp8266.println(data5); delay(1);
    esp8266.println();  delay(1); esp8266.flush();
  
    while(1)
    {
      if(esp8266.available())
        inputBuffer += (char)esp8266.read();
        
      if(inputBuffer.indexOf("CLOSED")> 0 || millis() - startTimeDataCapture > 10000) //don't wait more than 20 seconds
      {
        stringComplete = true;
        Serial.println(inputBuffer);
        delay(1);
        break;
      }
    }
    esp8266.println("AT+CIPCLOSE=4");
    delay(10);
    esp8266.println("AT+CWQAP");
  }
  
  delay(1000);
  
  
}

An Arduino Pro Mini running at 3.3v will be suitable for this. There will be no need of the logic level converters.

Arduino Voltmeter – 2 (more precise)

On some Arduino boards there is a Pin labelled as AREF or Analog Reference. This pin is very useful in cases where a stable and precise voltage reference is needed for the ADC. Practically the supplied voltage to the board can vary a bit, specially it can fall below the rated voltage depending on the load to the board.

By default Arduino uses the voltage of the board, that is 5v or 3.3v (depending on the board). Using the function analogReference() this can be changed. The function accepts one parameter called type. If the type mentioned is DEFAULT then it will use the voltage of the board. INTERNAL type will use a built-in reference equal to 1.1 volts on the ATmega168 or ATmega328 and 2.56 volts on the ATmega8. And EXTERNAL will use the voltage supplied to the AREF pin. 

(More about analogReference can be read at https://www.arduino.cc/en/Reference/AnalogReference)

Please note the voltage at AREF can 0-5 volts only and the input voltage at the I/O pin (here A0) cannot exceed that of the AREF pin.

The simple voltmeter described in a previous article has been modified here. It is now supplied with a precise reference voltage at the AREF pin.

Volt Meter Precise

The 5K resistance is not a necessity, it has been added for safety (switching to the INTERNAL while external power is given to AREF can damage the board with that resistance). If the resistance is used then the voltage at AREF will not be exact as supplied. That is because internally there is a 32k resistor connected to the AREF pin.

So in above case the voltage that the AREF actually getting is 3.3*32/(32+5) = 2.8540 (the actual will vary due to tolerance of components, so for cases where high precision is needed, the values of the resistors will have to be measured and also the voltage of the zener, and the voltage in the code nees to be changed accordingly).

#define READINGS 5

int sensorPin = A0;
short int readingsTaken = 0;
float voltage = 0.0, readingTotal = 0.0;

void setup() {
  // put your setup code here, to run once:
  pinMode(sensorPin, INPUT);
  analogReference(EXTERNAL);
  Serial.begin(9600);
}

void loop() {
  // put your main code here, to run repeatedly:
  readingTotal = 0.0;
  readingsTaken = 0;
  
  // we will take 5 readings at 1 sec interval and then do an average of that
  while(readingsTaken < READINGS) 
  {
    readingTotal += analogRead(sensorPin);
    readingsTaken++;
    delay(1000); //at every 1 second interval
  }

  voltage = (readingTotal/READINGS) * (2.8540/1024); // 2.8540 is the ref voltage being used. //the value in voltage at this point is what Arduino read based on input from voltage divider network. Need to calculate the original -- see below

  voltage = (20/2.609) * voltage; //unitary method to calculate the actual voltage that is read. When voltage read is 2.609, the input is 20v. With the above voltage divider used at input (100K ohm and 15k ohm) the input voltage at the I/O (pin A0) will be 2.609 when 20v is applied. 
   
  Serial.println(voltage); 
}

Voltmeter using Arduino

Using precisely calculated resistors and a stable power supply, Arduino can be used to work as a voltmeter.

Below is the schematic

Arduino Voltmeter

Though I used an Arduino Uno, but any Arduino can be used. (If the 3.3v versions are used then calculations will have to be done accordingly).

The resister for voltage divider has been chosen such that at 20 volts (measurement) supply the voltage at Arduino input pin is 5.0v. Greater than 5v at the input pin can damage the pin.

Here is the code

#define READINGS 5

int sensorPin = A0;
short int readingsTaken = 0;
float voltage = 0.0, readingTotal = 0.0;

void setup() {
  // put your setup code here, to run once:
  pinMode(sensorPin, INPUT);
  Serial.begin(9600);
}

void loop() {
  // put your main code here, to run repeatedly:
  readingTotal = 0.0;
  readingsTaken = 0;
  
  // we will take 5 readings at 1 sec interval and then do an average of that
  while(readingsTaken < READINGS) 
  {
    readingTotal += analogRead(sensorPin);
    readingsTaken++;
    delay(1000); //at every 1 second interval
  }

  voltage = (readingTotal/READINGS) * (5.0/1024); // the value in voltage at this point is what Arduino read based on input from voltage divider network. Need to calculate the original // 5.0 - is the ref voltage used by ADC. It is the default configuration and uses the voltage supplied to the board. To change the ref voltage/source please see this article

  voltage = (20/4.992) * voltage; //unitary method to calculate the actual voltage that is read. When voltage read is 4.922 (or 5.0v), the input is 20v. With the resistor divider at the input, the voltage at I/O will be 4.992

  Serial.println(voltage);
}

This is a simple and basic way. Where the precision will not be very good. Because the reference voltage being used by the ADC, which is actually the supply voltage can vary depending on the load to the circuit. To make it more precise an external reference voltage can be supplied to the Arduino. How to use an external reference voltage and the use of the AREF pin has been described in this article

UBLOX NEO 6M GPS Module

The NEO 6M from Ublox is a good and affordable GPS module. The characteristics are as follows.

It can be purchased with a ceramic antenna from online stores like Ebay or Aliexpress. Unfortunately the one I purchased had a problem with the Antenna connection due to which some time got wasted in trying to get a fix. After a little bit of tweaking with the antenna connector the module is getting a GPS fix even inside rooms.

I have supplied it with 5v and the RX and TX also has been connected to 5v I/O. There is an indicator (light) on the module that flashes when the module gets a GPS fix. (Please check with your module manufacturer for the correct voltage of the module)

Ublox provides a software called “u-center” for testing the module. But the software is good enough for monitoring also.  The u-center software can also be used to change/update configurations of the module. The software can be downloaded from this Ublox website’s link https://www.u-blox.com/en/product/u-center-windows . And as a backup it has been put up here also (at the time of writing this article the latest version was 8.21).

Ublox u-center software

The module can be connected using a USB to Serial module (PL2303 or CH340G) or using an Arduino. Below is the connection details for connecting through Arduino or USB to RS232 modules.

Connect to PC using Arduino 
Arduino                NEO 6M 
   RX         ----       RX
   TX         ----       TX
   5v         ----       5v
   GND        ----       GND

Connect to PC using USB to Serial Module
USB to RS232             NEO 6M 
 RX              ----       TX
 TX              ----       RX
 5v              ----       5v
 GND             ----       GND

 

The module works out of the box and no further configuration is required. It might take a while to get a fix.

Here is the datasheet.

The module outputs data in NMEA format. The details of the format can be found here. Here is a copy of the website material in case the site ever goes down (the data is of http://gpsinformation.org)

Please check with your module manufacturer for the correct voltage of the module

Notes:

  • Once the module somehow stopped working and responding. Removing the onboard battery helped. Re-attaching the battery later on didn’t have any problem and the module is working fine. The battery is for data backup, so removing it altogether doesn’t have any problem, just that it takes a lot of time to get a fix when the module is powered up again.

WS2811, WS2812, NeoPixel RGB Pixels/LEDs and Arduino

WS28WS281111 or WS2812 based LEDs / RGB pixels are cheap and easily available on the online stores. They run off 5 volts and can be addressed individually. Waterproof versions are also available.

On Ebay/Aliexpress/Alibaba they are sold as a set of 25 leds / RGB pixels connected together. Multiple such strips/chains can be connected together to form longer chains of light.

Unfortunately they mostly come without any power source or controller. Normally for a 25 RGB LED chain based on WS2811 consumes about .3W (please refer to manufacturer datasheet for exact requirements). So it can be powered from almost any ordinary 5v adapter, even mobile phone  chargers (with sufficient current supply capability) can be used.

For controlling the rgb lights and changing colors and effects an Arduino can be used. The “FastLED” project on GitHub is a nice library. It has many examples also. The library supports Arduino and various type of RGB LED / RGB Pixels. Here is the link to the GitHub repository:  https://github.com/FastLED/FastLED.
I am attaching the Master here as on 23-05-2016 in case the library goes off GitHub for some reason. The code belongs to the developers and contributors (https://github.com/FastLED/FastLED/graphs/contributors)
And here is the Arduino Library only as on 23-05-2016. The version is 3.1.0

LM35 Precision Cheap Temperature Sensor

The LM35 from Texas Instruments is a cheap but very good temperature sensor. It is available in various packages. Please refer to the LM35 Temperature Sensor for package and other details.

It can be powered directly from the 5v supply of Arduino.

The chip outputs  10.0 mV per °C. Below is a small snippet of code that can be used to convert the output voltage into temperature.

val = analogRead(tempPin);
mv = ( val/1024.0)*5000;  // mv = (val/1024) * (voltage * 1000) The 1024 is derived from  the fact that the Atmega ADC has 10 bit resolution, returning integers from 0 to 1023.
cel = mv/10; // cel = mv / 10.0 milli volt per °C
farh = (cel*9)/5 + 32;

Please refer the Datasheet for Pin Configuration.

Interfacing 16×2 LCD with Arduino

The 16×2 LCD is a cheap display that can be used to display text output from an Arduino.

Below is the schematic

LCD 16x2

  1. The VO is for setting the contrast (or readability) of the characters.
  2. A and K are the LED pins (backlight of the LCD)

Arduino has libraries for interfacing with this type of LCDs. The library has various examples including for text scrolling.

Basic example – simple text print

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // RS, Enable, D4, D5, D6, D7

void setup() 
{
  // set up the LCD's number of columns and rows:
  lcd.begin(16, 2);
  // Print a message to the LCD.
  lcd.print("hello, world!");
}